Facility Name: City of Watsonville Wastewater Treatment Plant Monitoring Period 8 / 01 / 14 to 9 / 30 / 14

|         | As  | Cd  | Cu   | Pb  | Hg  | Mo | Ni  | Se  | Zn   | Org-N | NH <sub>4</sub> -N | % solids |
|---------|-----|-----|------|-----|-----|----|-----|-----|------|-------|--------------------|----------|
| Result  | 6.7 | 3.4 | 510  | 15  | 1.0 | 15 | 24  | 7.1 | 830  | 23000 | 30000              | 16.7     |
| Table 3 | 41  | 39  | 1500 | 300 | 17  | na | 420 | 100 | 2800 | na    | na                 | na       |
| Table 1 | 75  | 85  | 4300 | 840 | 57  | 75 | 420 | 100 | 7500 | na    | na                 | na       |

| Sampling date(s): 8-14-14, 8-25-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2. Class B Pathogen Reduction: (Check off and fill in applicable portion)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| anaerobic digestion for to days at to degrees F / C (range for past month)  Class B: time (days) ≥ 120 - 3(temp, degrees C) for times between 15 and 60 days  aerobic digestion for to days at to degrees F / C (range for past month)  Class B: time (days) ≥ 120 - 4(temp, degrees C) for times between 40 and 60 days  drying beds for to months (attach records of dates in and out)  Class B: time > 3 months; 2 months > 0 degrees C  X fecal colliform: geometric mean of seven samples = (attach lab results)  Class B: geometric mean of seven samples is < 2,000,000 mpn  lime stabilization: pH at 2 hours after addition =  Class B: pH 2 hours after addition of lime is ≥ 12                                                                                                                                                                          |
| 3. Vector Attraction Reduction:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| X Option 1: % VS <sub>in</sub> = $75.8$ % VS <sub>out</sub> = $62.7$ % VSR = $46.4\%$ VAR: VSR > 38%  Option 2/3: Bench scale test: % VSR = after days  VAR: additional VSR < 17% after 40 days(anaerobic), < 15% after 30 days (aerobic)  Option 4: SOUR = VAR: SOUR < 1.5 mg O <sub>2</sub> /hr/gram (dry weight)  Option 5: Composted days at temps of to degrees F/C (attach times/temps)  VAR: temp > 40 degrees C for 14 days, w/5 days > 45 degrees C  Option 6: time alkali added: pH after 2 hours = pH after 22 hours = VAR: pH ≥ 12 for 2 hours after alkali addition, ≥ 11.5 for additional 22 hrs  Option 7: % solids = Stabilization method: VAR: stabilized solids > 75%  Option 8: % solids = VAR: unstabilized solids > 90%  Option 9/10: Applier will inject/incorporate within hours  VAR: injection within 1 hour, incorporation within 6 hours |
| Certification: I certify, under penalty of law, that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system or the persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.                                                                                                                                                                                       |
| Name and Official Title: <u>Barbara Picrson</u> , <u>Laboratory Manager</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Phone: (831) 768-3179 E-mail: bpierson@ci.watsonville.ca.us  Signature: Date: 8/12/15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |



City of Watsonville 500 Clearwater Lane

Watsonville, CA 95077

Reported:

09/03/2014 16:04

Project: Bi-Monthly Biosolids

Project Number: Nutrient & Metals

Project Manager: Barbara Pierson

#### **Chemical Analysis**

| BCL Sample ID: 1419078-01  | Client Samp         | ole Name:          | 142437 WWTP | Biosolids, 8/1 | 4/2014 1:50 | :00PM, B. Pierson, T | .Nguyen, L. Rios, | A. Avidano   |      |
|----------------------------|---------------------|--------------------|-------------|----------------|-------------|----------------------|-------------------|--------------|------|
| Constituent                | Dry Basis<br>Result | As Recvd<br>Result | Units       | PQL            | MDL         | Method               | MB<br>Bias        | Lab<br>Quals | Run# |
| Н                          | 7.63                | 7.63               | pH Units    | 0.05           | 0.05        | EPA-9040             |                   | pH1:3        | 1    |
| pH Measurement Temperature | 23.9                | 23.9               | С           | 0.1            | 0.1         | EPA-9040             |                   |              | 1    |
| Nitrate as N               | 2.4                 | 0.40               | mg/kg       | 1.0            | 0.26        | EPA-300.0            | ND                | J            | 2    |
| Total Kjeldahl Nitrogen    | 53000               | 8800               | mg/kg       | 400            | 160         | EPA-351.2            | ND                | A01          | 3    |
| Ammonia as N               | 30000               | 5000               | mg/kg       | 500            | 250         | EPA-350.1            | ND                | A01          | 4    |
| Total Phosphorus           | 30000               | 5000               | mg/kg       | 200            | 86          | EPA-365.4            | ND                | A01          | 5    |
| Solids                     | 100                 | 16.7               | %           | 0.05           | 0.05        | SM-2540G             | 19 1.8            |              | 6    |

|      |           |                  | Run            |         |            |          | QC       |     |
|------|-----------|------------------|----------------|---------|------------|----------|----------|-----|
| Run# | Method    | <b>Prep Date</b> | Date/Time      | Analyst | Instrument | Dilution | Batch ID |     |
| 1    | EPA-9040  | 08/21/14         | 08/21/14 14:30 | DIW     | MANUAL     | 1        | BXH2107  |     |
| 2    | EPA-300.0 | 08/26/14         | 08/27/14 13:25 | TMS     | IC1        | 1        | BXH2493  |     |
| 3    | EPA-351.2 | 08/28/14         | 08/29/14 10:43 | JP1     | SC-1       | 10       | BXH2776  |     |
| 4    | EPA-350.1 | 08/27/14         | 08/28/14 08:47 | JP1     | SC-1       | 50       | BXH2631  |     |
| 5    | EPA-365.4 | 08/28/14         | 08/28/14 16:27 | JP1     | SC-1       | 20       | BXH2777  |     |
| 6    | SM-2540G  | 08/22/14         | 08/22/14 11:05 | RAC     | MANUAL     | 1        | BXH2495  | 2.4 |

organic Nitrogen = TKN- Ammonia 53,000-30,000 = 23,000



Reported:

09/03/2014 16:04

Project: Bi-Monthly Biosolids

Project Number: Nutrient & Metals Project Manager: Barbara Pierson

| BCL Sample ID: | 1419078-01 | Client Samp         | le Name:           | 142437 WWTF | Biosolids, 8/1 | 4/2014 1:50 | :00PM, B. Pierson, T. | Nguyen, L. Rios, A | A. Avidano   |      |
|----------------|------------|---------------------|--------------------|-------------|----------------|-------------|-----------------------|--------------------|--------------|------|
| Constituent    |            | Dry Basis<br>Result | As Recvd<br>Result | Units       | PQL            | MDL         | Method                | MB<br>Bias         | Lab<br>Quals | Run# |
| Arsenic        |            | 6.7                 | 1.1                | mg/kg       | 1.0            | 0.40        | EPA-6010B             | ND                 |              | 1    |
| Cadmium        |            | 3.4                 | 0.56               | mg/kg       | 0.50           | 0.052       | EPA-6010B             | ND                 |              | 1    |
| Chromium       |            | 77                  | 13                 | mg/kg       | 0.50           | 0.050       | EPA-6010B             | ND                 |              | 2    |
| Copper         |            | 510                 | 84                 | mg/kg       | 1.0            | 0.050       | EPA-6010B             | ND                 |              | 1    |
| Lead           |            | 15                  | 2.5                | mg/kg       | 2.5            | 0.28        | EPA-6010B             | ND                 |              | 1    |
| Mercury        |            | 1.0                 | 0.17               | mg/kg       | 0.16           | 0.036       | EPA-7471A             | ND                 |              | 3    |
| Molybdenum     |            | 15                  | 2.5                | mg/kg       | 2.5            | 0.050       | EPA-6010B             | ND                 |              | 1    |
| Nickel         |            | 24                  | 3.9                | mg/kg       | 0.50           | 0.15        | EPA-6010B             | ND                 |              | 1    |
| Selenium       |            | 7.1                 | 1.2                | mg/kg       | 1.0            | 0.98        | EPA-6010B             | ND                 |              | 1    |
| Zinc           |            | 830                 | 140                | mg/kg       | 2.5            | 0.087       | EPA-6010B             | 0.30               |              | 1    |
| Boron          |            | 18                  | 3.0                | mg/kg       | 5.0            | 0.50        | EPA-6010B             | ND                 | J            | 2    |
| Potassium      |            | 1100                | 180                | mg/kg       | 50             | 5.0         | EPA-6010B             | ND                 |              | 2    |

|      |           |           | Run            |         |            |          | QC       |      |  |
|------|-----------|-----------|----------------|---------|------------|----------|----------|------|--|
| Run# | Method    | Prep Date | Date/Time      | Analyst | Instrument | Dilution | Batch ID | 2.00 |  |
| 1    | EPA-6010B | 08/20/14  | 08/23/14 01:43 | JRG     | PE-OP1     | 0.943    | BXH1875  |      |  |
| 2    | EPA-6010B | 08/20/14  | 08/21/14 16:24 | ARD     | PE-OP1     | 0.943    | BXH1875  |      |  |
| 3    | EPA-7471A | 08/22/14  | 08/25/14 10:38 | MEV     | CETAC1     | 0.992    | BXH2149  |      |  |

Facility Name: City of Watsonville Wastewater Treatment Plant Monitoring Period 10 / 01 / 14 to 11/30 / 14

|         | As  | Cd  | Cu   | Pb  | Hg  | Mo | Ni  | Se  | Zn   | Org-N | NH <sub>4</sub> -N | % solids |
|---------|-----|-----|------|-----|-----|----|-----|-----|------|-------|--------------------|----------|
| Result  | 8.7 | 1.9 | 440  | 11  | 1.1 | 12 | 31  | ND  | 860  | 40000 | 11000              | 16.6     |
| Table 3 | 41  | 39  | 1500 | 300 | 17  | na | 420 | 100 | 2800 | na    | na                 | na       |
| Table 1 | 75  | 85  | 4300 | 840 | 57  | 75 | 420 | 100 | 7500 | na    | na                 | na       |

| 1 abic 1                                                                                     | 13                                                                                                                                         | 0.5                                                                                                                           | 4300                                                  | 040                                                                                | 37                                                                 | 13                                                                          | 420                                                            | 100                                       | 7300                                    | ma                                      | na                                       | па                           |
|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------|-----------------------------------------|-----------------------------------------|------------------------------------------|------------------------------|
| Sampling d                                                                                   | late(s): _                                                                                                                                 | 10-9-1                                                                                                                        | 4, 10-27-1                                            | 14                                                                                 |                                                                    |                                                                             |                                                                |                                           |                                         |                                         |                                          |                              |
| 2. Class B l                                                                                 | Pathogen                                                                                                                                   | Reduct                                                                                                                        | ion: (Che                                             | ck off ar                                                                          | nd fill in                                                         | applicab                                                                    | le portio                                                      | n)                                        |                                         |                                         |                                          |                              |
| Clas                                                                                         | ss B: time<br>c digestic<br>ss B: time<br>g beds for<br>ss B: time<br>oliform: g<br>ss B: geor<br>abilizatic                               | e (days) on for e (days) cto e > 3 mo geometr metric n on: pH a                                                               | ≥ 120 - 3(to                                          | temp, de _ days at _ temp, de nths (att onths > 0 f seven s ven samp               | grees C)  legrees C ach reco degrees amples = oles is < 2 dition = | for time<br>c de<br>c) for time<br>rds of da<br>s C<br>= 13477<br>2,000,000 | es betwee<br>egrees F /<br>nes betwee<br>ites in an<br>(attach | n 15 and<br>C (rang<br>en 40 ar<br>d out) | d 60 days<br>ge for past<br>id 60 days  | or past mon                             | nth)                                     |                              |
| 3. Vector A                                                                                  | ttraction                                                                                                                                  | Reduct                                                                                                                        | ion:                                                  |                                                                                    |                                                                    |                                                                             |                                                                |                                           |                                         |                                         |                                          |                              |
| Opti Opti Opti Opti Opti Opti                                                                | VAR: VS on 2/3: B on 2/3: B on 2/3: B on 4: SO VAR: SO on 5: Co VAR: ten on 6: tim VAR: pF on 7: % s VAR: sta on 8: % s VAR: uns ion 9/10: | $R > 38\%$ ench scalitional UR =UR < 1. mposted up > 40 e alkali I $\geq$ 12 fo solids = tbilized solids = stabilized Applier | % ale test: % VSR < 17' 5 mg O <sub>2</sub> /h        | o VSR = % after or/gram ys at ten for 14 d p after all stabilizat 5% 90% t/incorpe | ai 40 days( (dry wei ups of ays, w/5 H after 2 (ali addi tion met) | fter                                                                        | days ic), < 159deg; 15 degree = pH 1.5 for achour              | rees F/C<br>es C<br>after 22<br>Iditional | 30 days (ac<br>(attach tir<br>hours = _ | nes/temps)                              |                                          |                              |
| Certificatio<br>or supervisi<br>information<br>responsible<br>accurate, an<br>possibility of | ion in acc<br>n submitt<br>for gathe<br>nd compl                                                                                           | cordance<br>ed. Bas<br>ering the<br>ete. I an                                                                                 | e with a sy<br>ed on my i<br>e informat<br>m aware tl | stem de inquiry tion, the                                                          | signed to<br>of the pe<br>informa<br>e are sign                    | assure propertion assure propertion submitted                               | that qual<br>persons v<br>mitted is                            | ified per<br>who man<br>, to the b        | rsonnel pro<br>age the sy<br>best of my | operly gath<br>stem or the<br>knowledge | er and eval<br>persons di<br>and belief, | luate the<br>rectly<br>true, |
| Name and (                                                                                   | Official T                                                                                                                                 | itle: <u>E</u>                                                                                                                | Barbara Pi                                            | erson, I                                                                           | Laborato                                                           | ry Mana                                                                     | ager .                                                         |                                           |                                         |                                         |                                          |                              |
| Phone: (83)                                                                                  | 1) 768-31                                                                                                                                  | 79' _                                                                                                                         | E-mai                                                 | il: <u>bpie</u>                                                                    | rson@ci                                                            |                                                                             | ille.ca.us                                                     |                                           | -                                       | _                                       |                                          |                              |
| oignature:                                                                                   | 1                                                                                                                                          | , (0                                                                                                                          | 0                                                     |                                                                                    |                                                                    | Da                                                                          | te:                                                            | 8/12/1:                                   | 3                                       |                                         |                                          |                              |



Reported: 11/04/2014 17:18
Project: Bi-Monthly Biosolids

Project Number: Nutrients and Metals
Project Manager: Barbara Pierson

#### Chemical Analysis

| BCL Sample ID: 1424368     | -01 Client Samp | le Name: | 142942 WW | /TP Biosoli | ds, 10/9/20 | 014 10:45:00AN | /I, J. Camacho |       |      |
|----------------------------|-----------------|----------|-----------|-------------|-------------|----------------|----------------|-------|------|
|                            | Dry Basis       | As Recvd |           |             |             |                | MB             | Lab   | 4.4  |
| Constituent                | Result          | Result   | Units     | PQL         | MDL         | Method         | Bias           | Quals | Run# |
| рН                         | 7.88            | 7.88     | pH Units  | 0.05        | 0.05        | EPA-9040       |                | pH1:1 | 1    |
| pH Measurement Temperature | 21.7            | 21.7     | С         | 0.1         | 0.1         | EPA-9040       |                | pH1:3 | 1    |
| Nitrate as N               | 4.0             | 0.66     | mg/kg     | 1.0         | 0.26        | EPA-300.0      | ND             | J     | 2    |
| Total Kjeldahl Nitrogen    | 51000           | 8600     | mg/kg     | 400         | 160         | EPA-351.2      | 190            | A01   | 3    |
| Ammonia as N               | 11000           | 1800     | mg/kg     | 200         | 100         | EPA-350.1      | ND             | A01   | 4    |
| Total Phosphorus           | 28000           | 4700     | mg/kg     | 200         | 86          | EPA-365.4      | ND             | A01   | 5    |
| Solids                     | 100             | 16.6     | %         | 0.05        | 0.05        | SM-2540G       |                | ,     | 6 ·  |

|      |           |           | Run            |         |            |          | QC       |
|------|-----------|-----------|----------------|---------|------------|----------|----------|
| Run# | Method    | Prep Date | Date/Time      | Analyst | Instrument | Dilution | Batch ID |
| 1    | EPA-9040  | 10/17/14  | 10/17/14 09:30 | DIM     | MANUAL     | 1        | BXJ1638  |
| 2    | EPA-300.0 | 10/16/14  | 10/16/14 21:41 | OLH     | IC5        | 1        | BXJ1559  |
| 3    | EPA-351.2 | 10/31/14  | 11/03/14 17:35 | JP1     | SC-1       | 10       | BXJ2914  |
| 4    | EPA-350.1 | 10/23/14  | 10/23/14 15:52 | JP1     | SC-1       | 19.608   | BXJ2171  |
| 5    | EPA-365.4 | 10/30/14  | 11/03/14 15:25 | JP1     | SC-1       | 20       | BXJ2916  |
| 6    | SM-2540G  | 10/20/14  | 10/20/14 14:25 | RAC     | MANUAL     | 1 .      | BXJ1786  |

organic Nitragen = TKN - Annonia = 51000-11000=40,000



Reported:

11/04/2014 17:18

Project: Bi-Monthly Biosolids

Project Number: Nutrients and Metals

Project Manager: Barbara Pierson

| BCL Sample ID: | 1424368-01 | Client Samp         | le Name:           | 142942 WV | VTP Biosoli | ds, 10/9/20 | 014 10:45:00AM | l, J. Camacho |              |      |
|----------------|------------|---------------------|--------------------|-----------|-------------|-------------|----------------|---------------|--------------|------|
| Constituent    |            | Dry Basis<br>Result | As Recvd<br>Result | Units     | PQL         | MDL         | Method         | MB<br>Bias    | Lab<br>Quals | Run# |
| Arsenic        |            | 8.7                 | 1.4                | mg/kg     | 1.0         | 0.40        | EPA-6010B      | ND            |              | 1    |
| Cadmium        |            | 1.9                 | 0.32               | mg/kg     | 0.50        | 0.052       | EPA-6010B      | ND            | J            | 1    |
| Chromium       |            | 86                  | 14                 | mg/kg     | 0.50        | 0.050       | EPA-6010B      | 0.050         |              | 1    |
| Copper         |            | 440                 | 73                 | mg/kg     | 1.0         | 0.050       | EPA-6010B      | 0.15          |              | 1.   |
| Lead           |            | 11                  | 1.9                | mg/kg     | 2.5         | 0.28        | EPA-6010B      | ND            | J            | 1    |
| Mercury        |            | 1.1                 | 0.18               | mg/kg     | 0.16        | 0.036       | EPA-7471A      | ND            |              | 2    |
| Molybdenum     |            | 12                  | 1.9                | mg/kg     | 2.5         | 0.050       | EPA-6010B      | 0.15          | J            | 1    |
| Nickel         |            | 31                  | 5.1                | mg/kg     | 0.50        | 0.15        | EPA-6010B      | ND            |              | 1    |
| Selenium       |            | ND                  | ND                 | mg/kg     | 1.0         | 0.98        | EPA-6010B      | ND            |              | 3    |
| Zinc           |            | 860                 | 140                | mg/kg     | 2.5         | 0.087       | EPA-6010B      | 0.68          |              | 1    |
| Boron          |            | 21                  | 3.6                | mg/kg     | 5.0         | 0.50        | EPA-6010B      | ND            | J            | 1    |
| Potassium      |            | 1100                | 180                | mg/kg     | 50          | 5.0         | EPA-6010B      | 7.0           |              | 1    |

|      |           |                  | Run            |         |            |          | QC       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------|-----------|------------------|----------------|---------|------------|----------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Run# | Method    | <b>Prep Date</b> | Date/Time      | Analyst | Instrument | Dilution | Batch ID | y and the second |
| .1 . | EPA-6010B | 10/21/14         | 10/23/14 00:09 | SRM     | PE-OP2     | 0.990    | BXJ1939  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2    | EPA-7471A | 10/17/14         | 10/17/14 14:11 | MEV     | CETAC1     | 0.992    | BXJ1624  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3    | EPA-6010B | 10/21/14         | 10/23/14 21:33 | SRM     | PE-OP2     | 0.990    | BXJ1939  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Facility Name: City of Watsonville Wastewater Treatment Plant Monitoring Period 12 / 01 / 14 to 01/31 / 15

|         | As  | Cd  | Cu   | Pb  | Hg  | Mo | Ni  | Se  | Zn   | Org-N | NH <sub>4</sub> -N | % solids |
|---------|-----|-----|------|-----|-----|----|-----|-----|------|-------|--------------------|----------|
| Result  | 4.1 | 2.8 | 510  | 21  | 1.7 | 12 | 33  | 8.7 | 1000 | 44100 | 7900               | 16.9     |
| Table 3 | 41  | 39  | 1500 | 300 | 17  | na | 420 | 100 | 2800 | na    | na                 | na       |
| Table 1 | 75  | 85  | 4300 | 840 | 57  | 75 | 420 | 100 | 7500 | na    | na                 | na       |

| Sampling date(s):12/15/14, 12/17/14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2. Class B Pathogen Reduction: (Check off and fill in applicable portion)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| anaerobic digestion for to days at to degrees F / C (range for past month)  Class B: time (days) ≥ 120 - 3(temp, degrees C) for times between 15 and 60 days  aerobic digestion for to days at to degrees F / C (range for past month)  Class B: time (days) ≥ 120 - 4(temp, degrees C) for times between 40 and 60 days  drying beds for to months (attach records of dates in and out)  Class B: time > 3 months; 2 months > 0 degrees C  X fecal colliform: geometric mean of seven samples = 4508 (attach lab results)  Class B: geometric mean of seven samples is < 2,000,000 mpn  lime stabilization: pH at 2 hours after addition =  Class B: pH 2 hours after addition of lime is ≥ 12 |
| 3. Vector Attraction Reduction:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Certification: I certify, under penalty of law, that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system or the persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.                   |
| Name and Official Title: <u>Barbara Picrson</u> , <u>Laboratory Manager</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Phone: (831) 768-3179 E-mail: bpierson@ci.watsonville.ca.us  Signature: Date: 8/12/15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |



Reported: 01/07/2015 22:51

Project: Bi-Monthly Biosolids

Project Number: [none]

Project Manager: Barbara Pierson

#### **Chemical Analysis**

| BCL Sample ID:         | 1430609-01 | Client Samp         | le Name:           | WWTP Bios | olids, 12/1 | 7/2014 10 | :23:00AM, E.Mo | Claine     |              | 1    |
|------------------------|------------|---------------------|--------------------|-----------|-------------|-----------|----------------|------------|--------------|------|
| Constituent            |            | Dry Basis<br>Result | As Recvd<br>Result | Units     | PQL         | MDL.      | Method         | MB<br>Bias | Lab<br>Quals | Run# |
| рН                     |            | 7.86                | 7.86               | pH Units  | 0.05        | 0.05      | EPA-9040       |            | pH1:3        | 1    |
| pH Measurement Ten     | nperature  | 19.5                | 19.5               | . с       | 0.1         | 0.1       | EPA-9040       |            |              | . 1  |
| Total Kjeldahl Nitroge | en         | 52000               | 8700               | mg/kg     | 400         | 160       | EPA-351.2      | ND         | A01          | 2    |
| Ammonia as N           |            | 7900                | 1300               | mg/kg     | 200         | 100       | EPA-350.1      | ND         | A01          | 3    |
| Total Phosphorus       |            | 30000               | 5100               | mg/kg     | 200         | 86        | EPA-365.4      | 90         | A01          | 4    |
| Solids                 |            | 100                 | 16.9               | %         | 0.05        | 0.05      | SM-2540G       |            |              | 5    |

|      |           |           | Run            |         |            |          | QC       |  |
|------|-----------|-----------|----------------|---------|------------|----------|----------|--|
| Run# | Method    | Prep Date | Date/Time      | Analyst | Instrument | Dilution | Batch ID |  |
| 1    | EPA-9040  | 12/29/14  | 12/29/14 12:15 | DIW     | MANUAL     | 1        | BXL2604  |  |
| 2    | EPA-351.2 | 12/26/14  | 12/30/14 09:06 | JP1     | SC-1       | 10       | BXL2416  |  |
| 3    | EPA-350.1 | 12/26/14  | 12/30/14 17:17 | JP1     | SC-1       | 19.231   | BXL2410  |  |
| 4    | EPA-365.4 | 12/26/14  | 12/29/14 10:35 | JP1     | SC-1       | 20       | BXL2417  |  |
| 5    | SM-2540G  | 12/26/14  | 12/26/14 14:30 | RAC     | MANUAL     | 1        | BXL2426  |  |

organic Nitroben = TKN - ammonia 52000 - 7900 = 44,100



Reported: 01/07/2015 22:51

Project: Bi-Monthly Biosolids

Project Number: [none]

Project Manager: Barbara Pierson

| BCL Sample ID: | 1430609-01 | Client Samp         | le Name:           | WWTP Bios | solids, 12/1 | 7/2014 10 | :23:00AM, E.Mc | Claine     |              |      |
|----------------|------------|---------------------|--------------------|-----------|--------------|-----------|----------------|------------|--------------|------|
| Constituent    |            | Dry Basis<br>Result | As Recvd<br>Result | Units     | PQL          | MDL       | Method         | MB<br>Bias | Lab<br>Quals | Run# |
| Arsenic        |            | 4.1                 | 0.70               | mg/kg     | 1.0          | 0.40      | EPA-6010B      | ND         | J            | 1    |
| Cadmium        |            | 2.8                 | 0.47               | mg/kg     | 0.50         | 0.052     | EPA-6010B      | ND         | J            | 1    |
| Chromium       |            | 87                  | 15                 | mg/kg     | 0.50         | 0.050     | EPA-6010B      | ND         |              | 1    |
| Copper         |            | 510                 | 85                 | mg/kg     | 1.0          | 0.050     | EPA-6010B      | ND         |              | 1    |
| Lead           |            | 21                  | 3.5                | mg/kg     | 2.5          | 0.28      | EPA-6010B      | ND         |              | . 1  |
| Mercury        |            | 1.7                 | 0.29               | mg/kg     | 0.16         | 0.036     | EPA-7471A      | ND         |              | 2    |
| Molybdenum     |            | 12                  | 2.1                | mg/kg     | 2.5          | 0.050     | EPA-6010B      | 0.052      | J            | 1    |
| Nickel         |            | 33                  | 5.6                | mg/kg     | 0.50         | 0.15      | EPA-6010B      | ND         |              | 1    |
| Selenium       |            | 8.7                 | 1.5                | mg/kg     | 1.0          | 0.98      | EPA-6010B      | ND         |              | 1    |
| Silver         |            | 2.4                 | 0.41               | mg/kg     | 0.50         | 0.067     | EPA-6010B      | ND         | J            | 1    |
| Zinc           |            | 1000                | 170                | mg/kg     | 2.5          | 0.087     | EPA-6010B      | 0.16       |              | 1    |
| Boron          |            | 38                  | 6.5                | mg/kg     | 5.0          | 0.50      | EPA-6010B      | 0.99       |              | 1    |
| Potassium      |            | 1300                | 210                | mg/kg     | 50           | 5.0       | EPA-6010B      | ND         |              | 1    |

|      |           |           | Run            |         |            |          | QC       |  |
|------|-----------|-----------|----------------|---------|------------|----------|----------|--|
| Run# | Method    | Prep Date | Date/Time      | Analyst | Instrument | Dilution | Batch ID |  |
| 1    | EPA-6010B | 12/23/14  | 12/24/14 10:12 | ARD     | PE-OP3     | 0.990    | BXL2195  |  |
| 2    | EPA-7471A | 01/06/15  | 01/06/15 09:58 | MEV     | CETAC1     | 0.992    | BYA0179  |  |



Reported: 01/07/2015 22:51
Project: Bi-Monthly Biosolids

Project Number: [none]

Project Manager: Barbara Pierson

#### **EPA Method 1664**

| BCL Sample ID: | 1430609-01 | Client Samp         | le Name:           | WWTP Bios | solids, 12/1 | 7/2014 10 | :23:00AM, E.McC | laine      |              |      |
|----------------|------------|---------------------|--------------------|-----------|--------------|-----------|-----------------|------------|--------------|------|
| Constituent    |            | Dry Basis<br>Result | As Recvd<br>Result | Units     | PQL          | MDL       | Method          | MB<br>Bias | Lab<br>Quals | Run# |
| Oil and Grease |            | 640                 | 110                | mg/kg     | 50           | 20        | EPA-1664A HEM   | ND         |              | 1    |

|      |               |           | Run            |         |            |          | QC       |  |
|------|---------------|-----------|----------------|---------|------------|----------|----------|--|
| Run# | Method        | Prep Date | Date/Time      | Analyst | Instrument | Dilution | Batch ID |  |
| 1    | EPA-1664A HEM | 01/05/15  | 01/05/15 07:30 | MAM     | Inst       | 0.992    | BYA0150  |  |

Facility Name: City of Watsonville Wastewater Treatment Plant Monitoring Period 02 / 01 / 15 to 03/31 / 15

|         | As | Cd  | Cu   | Pb  | Hg  | Mo | Ni  | Se  | Zn   | Org-N | NH <sub>4</sub> -N | % solids |
|---------|----|-----|------|-----|-----|----|-----|-----|------|-------|--------------------|----------|
| Result  | ND | 3.0 | 520  | 19  | 1.1 | 10 | 27  | ND  | 1000 | 41200 | 7800               | 17.9     |
| Table 3 | 41 | 39  | 1500 | 300 | 17  | na | 420 | 100 | 2800 | na    | na                 | na       |
| Table 1 | 75 | 85  | 4300 | 840 | 57  | 75 | 420 | 100 | 7500 | na    | na                 | na       |

| Sampling data(s): 2/26/15 2/22/15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sampling date(s):2/26/15, 2/23/15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2. Class B Pathogen Reduction: (Check off and fill in applicable portion)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| anaerobic digestion for to days at to degrees F / C (range for past month)  Class B: time (days) ≥ 120 - 3(temp, degrees C) for times between 15 and 60 days  aerobic digestion for to days at to degrees F / C (range for past month)  Class B: time (days) ≥ 120 - 4(temp, degrees C) for times between 40 and 60 days  drying beds for to months (attach records of dates in and out)  Class B: time > 3 months; 2 months > 0 degrees C  X fecal coliform: geometric mean of seven samples = 6884 (attach lab results)  Class B: geometric mean of seven samples is < 2,000,000 mpn  lime stabilization: pH at 2 hours after addition =  Class B: pH 2 hours after addition of lime is ≥ 12 |
| 3. Vector Attraction Reduction:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Certification: I certify, under penalty of law, that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system or the persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.                  |
| Name and Official Title: Barbara Pierson, Laboratory Manager                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Phone: (831) 768-3179 E-mail: ppierson@ci.watsonville.ca.us  Signature: Date: 8/12/15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |



Reported: 03/17/2015 12:59 Project: Bi-Monthly Biosolids

Project Number: Nutrients & Metals
Project Manager: Barbara Pierson

#### **Chemical Analysis**

| BCL Sample ID:         | 1505047-01 | Client Samp         | le Name:           | 150535 WW | /TP Biosoli | ds, 2/26/20 | 015 10:00:00AN | 1, J. Gonzalez |       |      |
|------------------------|------------|---------------------|--------------------|-----------|-------------|-------------|----------------|----------------|-------|------|
| Constituent            |            | Dry Basis<br>Result | As Recvd<br>Result | Units     | PQL         | MDL         | Method         | MB<br>Bias     | Lab   | Run# |
| рН                     |            | 7.90                | 7.90               | pH Units  | 0.05        | 0.05        | EPA-9040       |                | pH1:3 | 1    |
| pH Measurement Tem     | perature   | 21.5                | 21.5               | С         | 0.1         | 0.1         | EPA-9040       |                |       | 1    |
| Nitrate as N           |            | 9.8                 | 1.8                | mg/kg     | 1.0         | 0.26        | EPA-300.0      | ND             |       | 2    |
| Total Kjeldahl Nitroge | n          | 49000               | 8700               | mg/kg     | 800         | 320         | EPA-351.2      | ND             |       | 3    |
| Ammonia as N           |            | 7800                | 1400               | mg/kg     | 100         | 50          | EPA-350.1      | ND             | A07   | 4    |
| Total Phosphorus       |            | 26000               | 4700               | mg/kg     | 200         | 76          | EPA-365.4      | ND             | A07   | 5    |
| Solids                 |            | 100                 | 17.9               | %         | 0.05        | 0.05        | SM-2540G       |                | *     | 6    |

|      |           |           | Run            |         |            |          | QC       |
|------|-----------|-----------|----------------|---------|------------|----------|----------|
| Run# | Method    | Prep Date | Date/Time      | Analyst | Instrument | Dilution | Batch ID |
| 1    | EPA-9040  | 03/06/15  | 03/06/15 10:45 | DIW     | MANUAL     | 1        | BYC0589  |
| 2    | EPA-300.0 | 03/10/15  | 03/10/15 22:28 | BMW     | IC8        | 1        | BYC0879  |
| 3    | EPA-351.2 | 03/06/15  | 03/09/15 12:49 | JP1     | SC-1       | 20       | BYC0601  |
| 4    | EPA-350.1 | 03/10/15  | 03/16/15 12:47 | JP1     | SC-1       | 10       | BYC0914  |
| 5    | EPA-365.4 | 03/06/15  | 03/09/15 08:56 | JP1     | SC-1       | 20       | BYC0602  |
| 6    | SM-2540G  | 03/04/15  | 03/04/15 14:40 | RAC     | MANUAL     | 1        | BYC0370  |

organic Nitrosa = TKN - Amomia
2 49000 - 7800 = 41,200



Reported: 03/17/2015 12:59

Project: Bi-Monthly Biosolids

Project Number: Nutrients & Metals Project Manager: Barbara Pierson

| 1505047-01 | Client Samp         | le Name:                                                        | 150535 WV                                                                                                                                                                                                                                                                                                                                                                            | VTP Biosoli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ds, 2/26/20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 015 10:00:00AM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | , J. Gonzalez                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                           |
|------------|---------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
|            | Dry Basis<br>Result | As Recvd<br>Result                                              | Units                                                                                                                                                                                                                                                                                                                                                                                | PQL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MDL.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MB<br>Bias                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Lab<br>Quals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Run#                                                                      |
|            | ND                  | ND                                                              | mg/kg                                                                                                                                                                                                                                                                                                                                                                                | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | EPA-6010B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                         |
|            | 3.0                 | 0.53                                                            | mg/kg                                                                                                                                                                                                                                                                                                                                                                                | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.052                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EPA-6010B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                         |
|            | 82                  | 15                                                              | mg/kg                                                                                                                                                                                                                                                                                                                                                                                | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EPA-6010B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                         |
|            | 520                 | 93                                                              | mg/kg                                                                                                                                                                                                                                                                                                                                                                                | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EPA-6010B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.061                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                         |
|            | 19                  | 3.4                                                             | mg/kg                                                                                                                                                                                                                                                                                                                                                                                | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | EPA-6010B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                         |
|            | 1.1                 | 0.20                                                            | mg/kg                                                                                                                                                                                                                                                                                                                                                                                | 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EPA-7471A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2                                                                         |
|            | 10                  | 1.9                                                             | mg/kg                                                                                                                                                                                                                                                                                                                                                                                | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EPA-6010B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                         |
|            | 27                  | 4.9                                                             | mg/kg                                                                                                                                                                                                                                                                                                                                                                                | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | EPA-6010B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                         |
|            | ND                  | ND                                                              | mg/kg                                                                                                                                                                                                                                                                                                                                                                                | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | EPA-6010B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                         |
|            | 2.1                 | 0.38                                                            | mg/kg                                                                                                                                                                                                                                                                                                                                                                                | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.067                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EPA-6010B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1-                                                                        |
|            | 1000                | 180                                                             | mg/kg                                                                                                                                                                                                                                                                                                                                                                                | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.087                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EPA-6010B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                         |
|            | 21                  | 3.8                                                             | mg/kg                                                                                                                                                                                                                                                                                                                                                                                | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | EPA-6010B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                         |
|            | 1200                | 210                                                             | mg/kg                                                                                                                                                                                                                                                                                                                                                                                | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | EPA-6010B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                         |
|            | 1200                | 210                                                             | mg/kg                                                                                                                                                                                                                                                                                                                                                                                | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | EPA-6010B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                         |
|            | 1505047-01          | Dry Basis Result ND 3.0 82 520 19 1.1 10 27 ND 2.1 1000 21 1200 | Dry Basis Result         As Recvd Result           ND         ND           3.0         0.53           82         15           520         93           19         3.4           1.1         0.20           10         1.9           27         4.9           ND         ND           2.1         0.38           1000         180           21         3.8           1200         210 | Dry Basis<br>Result         As Recvd<br>Result         Units           ND         ND         mg/kg           3.0         0.53         mg/kg           82         15         mg/kg           520         93         mg/kg           19         3.4         mg/kg           1.1         0.20         mg/kg           10         1.9         mg/kg           27         4.9         mg/kg           ND         ND         mg/kg           2.1         0.38         mg/kg           1000         180         mg/kg           21         3.8         mg/kg           1200         210         mg/kg | Dry Basis Result         As Recvd Result         Units         PQL           ND         ND         mg/kg         1.0           3.0         0.53         mg/kg         0.50           82         15         mg/kg         0.50           520         93         mg/kg         1.0           19         3.4         mg/kg         2.5           1.1         0.20         mg/kg         0.16           10         1.9         mg/kg         0.50           ND         ND         mg/kg         0.50           ND         ND         mg/kg         1.0           2.1         0.38         mg/kg         0.50           1000         180         mg/kg         2.5           21         3.8         mg/kg         5.0           1200         210         mg/kg         25 | Dry Basis Result         As Recvd Result         Units PQL MDL         MDL MDL           ND         ND         mg/kg         1.0         0.40           3.0         0.53         mg/kg         0.50         0.052           82         15         mg/kg         0.50         0.050           520         93         mg/kg         1.0         0.050           19         3.4         mg/kg         2.5         0.28           1.1         0.20         mg/kg         0.16         0.036           10         1.9         mg/kg         2.5         0.050           27         4.9         mg/kg         0.50         0.15           ND         ND         mg/kg         1.0         0.98           2.1         0.38         mg/kg         0.50         0.067           1000         180         mg/kg         2.5         0.087           21         3.8         mg/kg         5.0         0.50           1200         210         mg/kg         25         3.6 | Dry Basis<br>Result         As Recvd<br>Result         Units<br>PQL         PQL         MDL         Method           ND         ND         mg/kg         1.0         0.40         EPA-6010B           3.0         0.53         mg/kg         0.50         0.052         EPA-6010B           82         15         mg/kg         0.50         0.050         EPA-6010B           520         93         mg/kg         1.0         0.050         EPA-6010B           19         3.4         mg/kg         2.5         0.28         EPA-6010B           1.1         0.20         mg/kg         0.16         0.036         EPA-7471A           10         1.9         mg/kg         2.5         0.050         EPA-6010B           27         4.9         mg/kg         0.50         0.15         EPA-6010B           ND         ND         mg/kg         1.0         0.98         EPA-6010B           2.1         0.38         mg/kg         0.50         0.067         EPA-6010B           1000         180         mg/kg         2.5         0.087         EPA-6010B           21         3.8         mg/kg         5.0         0.50         EPA-6010B | Dry Basis Result         As Recvd Result         Units         PQL         MDL         Method Bias           ND         ND         mg/kg         1.0         0.40         EPA-6010B         ND           3.0         0.53         mg/kg         0.50         0.052         EPA-6010B         ND           82         15         mg/kg         0.50         0.050         EPA-6010B         ND           520         93         mg/kg         1.0         0.050         EPA-6010B         ND           19         3.4         mg/kg         2.5         0.28         EPA-6010B         ND           1.1         0.20         mg/kg         0.16         0.036         EPA-7471A         ND           10         1.9         mg/kg         2.5         0.050         EPA-6010B         0.13           27         4.9         mg/kg         0.50         0.15         EPA-6010B         ND           ND         ND         mg/kg         0.50         0.067         EPA-6010B         ND           1000         180         mg/kg         2.5         0.087         EPA-6010B         ND           1000         180         mg/kg         2.5         0.087 <td>  Dry Basis   As Recvd   Result   Units   PQL   MDL   Method   Bias   Quals    </td> | Dry Basis   As Recvd   Result   Units   PQL   MDL   Method   Bias   Quals |

|      |           |           | Run            |         |            |          | QC       |  |
|------|-----------|-----------|----------------|---------|------------|----------|----------|--|
| Run# | Method    | Prep Date | Date/Time      | Analyst | Instrument | Dilution | Batch ID |  |
| 1    | EPA-6010B | 03/05/15  | 03/06/15 12:06 | JRG     | PE-OP2     | 0.962    | BYC0413  |  |
| 2    | EPA-7471A | 03/04/15  | 03/05/15 09:26 | MEV     | CETAC1     | 1.025    | BYC0374  |  |

Facility Name: City of Watsonville Wastewater Treatment Plant Monitoring Period 4 / 01 / 15 to 5/ 31 / 15

|         | As  | Cd  | Cu   | Pb  | Hg  | Mo | Ni  | Se  | Zn   | Org-N | NH <sub>4</sub> -N | % solids |
|---------|-----|-----|------|-----|-----|----|-----|-----|------|-------|--------------------|----------|
| Result  | 5.2 | 3.2 | 460  | 19  | 1.5 | 10 | 28  | 15  | 920  | 48100 | 5900               | 16.6     |
| Table 3 | 41  | 39  | 1500 | 300 | 17  | na | 420 | 100 | 2800 | na    | na                 | na       |
| Table 1 | 75  | 85  | 4300 | 840 | 57  | 75 | 420 | 100 | 7500 | na    | na                 | na       |

| Table 1 /3                                                                                                                                     | 0.5                                                                                                                                 | 4300                                                                                             | 040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 31                                                                   | 75                                                                            | 420                                               | 100                                          | 7500                                    | IIa                                     | na                                       | na.                          |
|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------|-----------------------------------------|-----------------------------------------|------------------------------------------|------------------------------|
| Sampling date(s): _                                                                                                                            | 4/20/1                                                                                                                              | 15, 4/22/15                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                      |                                                                               |                                                   |                                              |                                         |                                         | *                                        |                              |
| 2. Class B Pathogen                                                                                                                            | Reduct                                                                                                                              | tion: (Che                                                                                       | ck off a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nd fill in                                                           | applicab                                                                      | ole portio                                        | on)                                          |                                         |                                         |                                          |                              |
| anaerobic diges                                                                                                                                | e (days) on for e (days) cto e > 3 mo geometr metric n on: pH a                                                                     | ≥ 120 - 3(1<br>to                                                                                | temp, de days at (temp, de temp, de tem | egrees C)  tto legrees C ach reco degree amples = ples is < dition = | for time<br>c) do<br>c) for time<br>rds of da<br>s C<br>= _662 (a<br>2,000,00 | es betwee<br>egrees F<br>nes betwee<br>ntes in an | en 15 and<br>C (rang<br>een 40 and<br>d out) | d 60 days<br>ge for past<br>id 60 days  | month)                                  | nth)                                     |                              |
| 3. Vector Attraction                                                                                                                           | Reduct                                                                                                                              | tion:                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                      |                                                                               |                                                   |                                              |                                         |                                         |                                          |                              |
| Option 4: SO VAR: SO Option 5: Con VAR: ten Option 6: tim VAR: pl Option 7: % s VAR: sta Option 8: % s VAR: un: Option 9/10:                   | $R > 38\%$ ench scalitional $UR = \_$ $UR < 1$ mposted $IP > 40$ e alkali $IP = 12$ foolids = abilized foolids = stabilized Applier | % ale test: % VSR < 17'  5 mg O <sub>2</sub> /h  1 da degrees C added: or 2 hours S solids > 75' | o VSR = % after or/gram ys at ten for 14 d pafter all stabiliza 5% 90% t/incorp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a 40 days( (dry wei nps of lays, w/5 H after 2 kali addi tion met    | fter                                                                          | deg<br>45 degree<br>= pH<br>1.5 for ad<br>hour    | % after : rees F/C es C after 22 dditiona    | hours = _                               | nes/temps)                              |                                          |                              |
| Certification: I cer<br>or supervision in acc<br>information submitt<br>responsible for gathe<br>accurate, and compl<br>possibility of fine an | cordance<br>ed. Bas<br>ering the<br>ete. I a                                                                                        | e with a sy<br>ed on my i<br>e informat<br>m aware t                                             | estem de inquiry tion, the hat ther                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | signed to<br>of the pe<br>informa<br>e are sign                      | o assure<br>rson or p<br>tion sub<br>nificant p                               | that qual<br>persons v<br>mitted is               | lified per<br>who man<br>, to the l          | rsonnel pro<br>age the sys<br>est of my | operly gath<br>stem or the<br>knowledge | er and eval<br>persons di<br>and belief, | luate the<br>rectly<br>true, |
| Name and Official T                                                                                                                            | itle: _E                                                                                                                            | Barbara Pi                                                                                       | erson,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Laborato                                                             | ory Man                                                                       | ager                                              |                                              |                                         |                                         |                                          |                              |
| Phone: (831) 768-31                                                                                                                            | <u>79</u> _                                                                                                                         | E-mai                                                                                            | il: <u>bpie</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | rson@ci                                                              | .watsonv                                                                      | ille.ca.us                                        | S                                            |                                         |                                         |                                          |                              |
| Signature:                                                                                                                                     | 7/2                                                                                                                                 | Y                                                                                                | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                      | Da                                                                            | te:                                               | 8/12/1                                       | 5                                       |                                         |                                          |                              |



Reported: 05/08/2015 11:54 Project: Bi-Monthly Biosolids

Project Number: Metals & Nutrients Project Manager: Barbara Pierson

#### **Chemical Analysis**

| BCL Sample ID:         | 1509877-01 | Client Samp | le Name: | WWTP Belt Press Biosolids, 4/22/2015 10:15:00AM, Barbara Pierson |      |      |           |      |       |      |  |  |
|------------------------|------------|-------------|----------|------------------------------------------------------------------|------|------|-----------|------|-------|------|--|--|
|                        |            | Dry Basis   | As Recvd |                                                                  |      |      |           | МВ   | Lab   |      |  |  |
| Constituent            |            | Result      | Result   | Units                                                            | PQL  | MDL  | Method    | Bias | Quals | Run# |  |  |
| рН                     |            | 7.64        | 7.64     | pH Units                                                         | 0.05 | 0.05 | EPA-9040  |      | pH1:3 | 1    |  |  |
| pH Measurement Tem     | perature   | 23.0        | 23.0     | С                                                                | 0.1  | 0.1  | EPA-9040  |      |       | 1    |  |  |
| Nitrate as N           |            | 12          | 2.0      | mg/kg                                                            | 1.0  | 0.26 | EPA-300.0 | ND   |       | 2    |  |  |
| Total Kjeldahl Nitroge | n          | 54000       | 8900     | mg/kg                                                            | 400  | 160  | EPA-351.2 | ND   | A07   | 3    |  |  |
| Ammonia as N           |            | 5900        | 980      | mg/kg                                                            | 200  | 100  | EPA-350.1 | ND   | A07   | 4    |  |  |
| Total Phosphorus       |            | 28000       | 4700     | mg/kg                                                            | 200  | 76   | EPA-365.4 | ND   | A07   | 5    |  |  |
| Solids                 |            | 100         | 16.6     | %                                                                | 0.05 | 0.05 | SM-2540G  |      |       | 6    |  |  |

|      |           |           | Run            |         |            |          | QC       |  |
|------|-----------|-----------|----------------|---------|------------|----------|----------|--|
| Run# | Method    | Prep Date | Date/Time      | Analyst | Instrument | Dilution | Batch ID |  |
| 1    | EPA-9040  | 05/01/15  | 05/01/15 10:15 | DIW     | MANUAL     | 1        | BYE0067  |  |
| 2    | EPA-300.0 | 04/30/15  | 05/01/15 19:35 | BMW     | IC2        | 1        | BYD2608  |  |
| 3    | EPA-351.2 | 05/06/15  | 05/07/15 09:28 | JMH     | SC-1       | 10       | BYE0477  |  |
| 4    | EPA-350.1 | 05/01/15  | 05/02/15 09:37 | JMH     | SC-1       | 20       | BYE0107  |  |
| 5    | EPA-365.4 | 05/06/15  | 05/07/15 09:47 | JMH     | SC-1       | 20       | BYE0478  |  |
| 6    | SM-2540G  | 04/28/15  | 04/28/15 11:30 | RAC     | Inst       | 1        | BYD2419  |  |

Org-N = TKN-ammonia = 54000-5900 = 48100



Reported: 05/08/2015 11:54 Project: Bi-Monthly Biosolids

Project Number: Metals & Nutrients Project Manager: Barbara Pierson

| BCL Sample ID: | 1509877-01 | Client Samp         | le Name:           | WWTP Belf | Press Bios | solids, 4/22 | 2/2015 10:15:00 | AM, Barbara I | Pierson      |      |
|----------------|------------|---------------------|--------------------|-----------|------------|--------------|-----------------|---------------|--------------|------|
| Constituent    |            | Dry Basis<br>Result | As Recvd<br>Result | Units     | PQL        | MDL          | Method          | MB<br>Bias    | Lab<br>Quals | Run# |
| Arsenic        |            | 5.2                 | 0.87               | mg/kg     | 1.0        | 0.40         | EPA-6010B       | ND            | J            | 1    |
| Cadmium        |            | 3.2                 | 0.53               | mg/kg     | 0.50       | 0.052        | EPA-6010B       | ND            |              | 1    |
| Chromium       |            | 75                  | 12                 | mg/kg     | 0.50       | 0.050        | EPA-6010B       | ND            |              | 1    |
| Copper         |            | 460                 | 76                 | mg/kg     | 1.0        | 0.050        | EPA-6010B       | ND            |              | 1    |
| Lead           |            | 19                  | 3.2                | mg/kg     | 2.5        | 0.28         | EPA-6010B       | ND            |              | 1    |
| Mercury        |            | 1.5                 | 0.24               | mg/kg     | 0.16       | 0.036        | EPA-7471A       | ND            |              | 2    |
| Molybdenum     |            | 10                  | 1.7                | mg/kg     | 2.5        | 0.050        | EPA-6010B       | 0.082         | J            | 1    |
| Nickel         |            | 28                  | 4.7                | mg/kg     | 0.50       | 0.15         | EPA-6010B       | ND            |              | 1    |
| Selenium       |            | 15                  | 2.4                | mg/kg     | 1.0        | 0.98         | EPA-6010B       | ND            |              | 1    |
| Zinc           |            | 920                 | 150                | mg/kg     | 2.5        | 0.087        | EPA-6010B       | ND            |              | 1    |
| Boron          |            | 49                  | 8.1                | mg/kg     | 5.0        | 0.50         | EPA-6010B       | ND            |              | 3    |
| Potassium      |            | 1400                | 240                | mg/kg     | 50         | 5.0          | EPA-6010B       | 10            |              | 1    |

|      |           |           | Run            |         |            |          | QC       |
|------|-----------|-----------|----------------|---------|------------|----------|----------|
| Run# | Method    | Prep Date | Date/Time      | Analyst | Instrument | Dilution | Batch ID |
| 1    | EPA-6010B | 04/27/15  | 04/28/15 15:46 | ARD     | PE-OP3     | 0.943    | BYD2310  |
| 2    | EPA-7471A | 04/28/15  | 04/28/15 16:06 | MEV     | CETAC1     | 1.025    | BYD2380  |
| 3    | EPA-6010B | 04/27/15  | 04/29/15 14:08 | ARD     | PE-OP3     | 0.943    | BYD2310  |

Facility Name: City of Watsonville Wastewater Treatment Plant Monitoring Period 6 / 01 / 15 to 7/ 31 / 15

|         | As  | Cd  | Cu   | Pb  | Hg  | Mo | Ni  | Se  | Zn   | Org-N | NH <sub>4</sub> -N | % solids |
|---------|-----|-----|------|-----|-----|----|-----|-----|------|-------|--------------------|----------|
| Result  | 5.2 | 3.2 | 460  | 19  | 1.5 | 10 | 28  | 15  | 920  | 48100 | 5900               | 16.6     |
| Table 3 | 41  | 39  | 1500 | 300 | 17  | na | 420 | 100 | 2800 | na    | na                 | na       |
| Table 1 | 75  | 85  | 4300 | 840 | 57  | 75 | 420 | 100 | 7500 | na    | na                 | na       |

| Sampling date(s):6/16/15, 6/29/15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2. Class B Pathogen Reduction: (Check off and fill in applicable portion)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| anaerobic digestion for to days at to degrees F / C (range for past month)  Class B: time (days) ≥ 120 - 3(temp, degrees C) for times between 15 and 60 days  aerobic digestion for to days at to degrees F / C (range for past month)  Class B: time (days) ≥ 120 - 4(temp, degrees C) for times between 40 and 60 days  drying beds for to months (attach records of dates in and out)  Class B: time > 3 months; 2 months > 0 degrees C  X fecal coliform: geometric mean of seven samples =15766 (attach lab results)  Class B: geometric mean of seven samples is < 2,000,000 mpn  lime stabilization: pH at 2 hours after addition =  Class B: pH 2 hours after addition of lime is ≥ 12 |
| 3. Vector Attraction Reduction:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Certification: I certify, under penalty of law, that this document and all attachments were prepared under my directio or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system or the persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.                   |
| Name and Official Title: <u>Barbara Pierson, Laboratory Manager</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Phone: (831) 768-3179 E-mail: ppierson@ci.watsonville.ca.us  Signature: Date: 8/12/15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |



Reported:

07/06/2015 11:49

Project: Bi-Monthly Biosolids

Project Number: Nutrients & Metals

Project Manager: Barbara Pierson

#### **Chemical Analysis**

| BCL Sample ID:         | 1514892-01 | Client Samp         | le Name:           | WWTP Bios | olids, 6/16 | /2015 12:4 | 45:00PM   |            |              |      |
|------------------------|------------|---------------------|--------------------|-----------|-------------|------------|-----------|------------|--------------|------|
| Constituent            |            | Dry Basis<br>Result | As Recvd<br>Result | Units     | PQL         | MDL        | Method    | MB<br>Bias | Lab<br>Quals | Run# |
| pH                     |            | 7.44                | 7.44               | pH Units  | 0.05        | 0.05       | EPA-9040  |            | pH1:1        | 1    |
| pH Measurement Ten     | perature   | 26.2                | 26.2               | С         | 0.1         | 0.1        | EPA-9040  |            |              | 1    |
| Nitrate as N           |            | 9.9                 | 1.5                | mg/kg     | 1.0         | 0.26       | EPA-300.0 | ND         |              | 2    |
| Total Kjeldahl Nitroge | en .       | 55000               | 8400               | mg/kg     | 400         | 160        | EPA-351.2 | ND         | A07          | 3    |
| Ammonia as N           |            | 8000                | 1200               | mg/kg     | 100         | 50         | EPA-350.1 | ND         | A07          | 4    |
| Total Phosphorus       |            | 35000               | 5300               | mg/kg     | 200         | 76         | EPA-365.4 | ND         | A07          | 5    |
| Solids                 |            | 100                 | 15.3               | %         | 0.05        | 0.05       | SM-2540G  |            |              | 6    |

|      |           |           | Run             |         |            |          | QC       |  |
|------|-----------|-----------|-----------------|---------|------------|----------|----------|--|
| Run# | Method    | Prep Date | Date/Time       | Analyst | Instrument | Dilution | Batch ID |  |
| 1    | EPA-9040  | 06/30/15  | 06/30/15_12:15_ | DIW     | MANUAL     | 1        | BYG0045  |  |
| 2    | EPA-300.0 | 06/23/15  | 06/23/15 15:30  | BMW     | IC2        | 1        | BYF2048  |  |
| 3    | EPA-351.2 | 06/23/15  | 06/24/15 09:24  | JMH     | SC-1       | 10       | BYF2074  |  |
| 4    | EPA-350.1 | 06/23/15  | 06/24/15 14:25  | JMH     | SC-1       | 9.804    | BYF2077  |  |
| 5 -  | EPA-365.4 | 06/23/15  | 06/24/15 08:23  | JMH     | SC-1       | 20       | BYF2110  |  |
| 6    | SM-2540G  | 06/19/15  | 06/19/15 13:00  | DIW     | MANUAL     | 1        | BYF1879  |  |



Reported: 07/06/2015 11:49
Project: Bi-Monthly Biosolids

Project Number: Nutrients & Metals Project Manager: Barbara Pierson

| BCL Sample ID: | 1514892-01 | Client Samp         | le Name:           | WWTP Bios | solids, 6/16 | /2015 12:4 | 45:00PM   |            |              |       |
|----------------|------------|---------------------|--------------------|-----------|--------------|------------|-----------|------------|--------------|-------|
| Constituent    |            | Dry Basis<br>Result | As Recvd<br>Result | Units     | PQL          | MDL        | Method    | MB<br>Bias | Lab<br>Quals | Run # |
| Arsenic        |            | 3.0                 | 0.46               | mg/kg     | 1.0          | 0.40       | EPA-6010B | ND         | J            | 1     |
| Cadmium        |            | 3.2                 | 0.49               | mg/kg     | 0.50         | 0.052      | EPA-6010B | ND         | J            | 1     |
| Chromium       |            | 86                  | 13                 | mg/kg     | 0.50         | 0.050      | EPA-6010B | ND         |              | 1     |
| Copper         |            | 460                 | 70                 | mg/kg     | 1.0          | 0.050      | EPA-6010B | ND         |              | 1     |
| Lead           |            | 11                  | 1.7                | mg/kg     | 2.5          | 0.28       | EPA-6010B | ND         | J            | 1     |
| Mercury        |            | 1.0                 | 0.16               | mg/kg     | 0.16         | 0.036      | EPA-7471A | ND         |              | 2     |
| Molybdenum     |            | 11                  | 1.7                | mg/kg     | 2.5          | 0.050      | EPA-6010B | ND         | J            | 1     |
| Nickel         |            | 32                  | 5.0                | mg/kg     | 0.50         | 0.15       | EPA-6010B | ND         |              | 1     |
| Selenium       |            | 7.3                 | 1.1                | mg/kg     | 1.0          | 0.98       | EPA-6010B | ND         |              | 1     |
| Silver         |            | 1.5                 | 0.23               | mg/kg     | 0.50         | 0.067      | EPA-6010B | ND         | J            | 1     |
| Zinc           |            | 950                 | 150                | mg/kg     | 2.5          | 0.087      | EPA-6010B | 0.23       |              | 1     |
| Boron          |            | 33                  | 5.0                | mg/kg     | 5.0          | 0.50       | EPA-6010B | 1.5        |              | 1     |
| Sodium         |            | 1700                | 250                | mg/kg     | 25           | 3.6        | EPA-6010B | ND         |              | 1     |
| Potassium      |            | 1400                | 210                | mg/kg     | 50           | 5.0        | EPA-6010B | ND         |              | 1     |

|      |           |                  | Run            |         |            |          | QC       |
|------|-----------|------------------|----------------|---------|------------|----------|----------|
| Run# | Method    | <b>Prep Date</b> | Date/Time      | Analyst | Instrument | Dilution | Batch ID |
| 1    | EPA-6010B | 06/25/15         | 06/26/15 10:10 | ARD     | PE-OP3     | 0.926    | BYF2343  |
| 2    | EPA-7471A | 06/25/15         | 06/25/15 13:33 | MEV     | CETAC1     | 1.008    | BYF2330  |

# City of Watsonville Utilities Laboratory

# Pathogen Reduction Supporting Data Fecal Coliform Monitoring

|               |           | MPN        | MPN/gram (dry weight) |           |           |           |
|---------------|-----------|------------|-----------------------|-----------|-----------|-----------|
| Date Analyzed | 8/25/2014 | 10/27/2014 | 12/15/2014            | 2/23/2015 | 4/20/2015 | 6/29/2015 |
| Date Sampled  | 8/25/2014 | 10/27/2014 | 12/15/2014            | 2/23/2015 | 4/20/2015 | 6/29/2015 |
| Sample        |           |            | ě                     |           |           |           |
| _             | 27        | 2,843      | 4,255                 | 1,352     | 27        | 125,581   |
| 2             | 2,205     | 24,876     | 5,159                 | 2,222     | 99        | 35        |
| 3             | 62,035    | 29,762     | 17,341                | 12,429    | 199       | 49        |
| 4             | 360,000   | 12,865     | 11,258                | 46,700    | 6,214     | 196,629   |
| വ             | 22,124    | 71,823     | 8,280                 | 26,341    | 3,977     | 126,984   |
| 9             | 53,254    | 14,118     | 200                   | 8,247     | 1,196     | 221,311   |
| 7             | 7,303     | 2,941      | 1,504                 | 1,934     | 5,476     | 203,488   |
| Geometric     |           | 5          |                       |           |           |           |
| Mean*         | 10,205    | 13,477     | 4,508                 | 6,884     | 662       | 15,766    |
|               |           |            |                       |           |           |           |

<sup>\*</sup> To meet Class B Standards, samples must have <2,000,000 MPN/gram fecal coliform. All samples are well below this criteria. Samples collected from 7 discrete locations on the drying bed at the Wastewater Treatment Facility Sample analyzed on the same day they were collected by Utilities Department Laboratory Analyst